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Abstract. Production and analysis of non-Gaussian radiation fields has evinced a lot of attention re-
cently. Simplest way of generating such non-Gaussians is through adding (subtracting) photons to Gaus-
sian fields. Interestingly, when photons are added to classical Gaussian fields, the resulting states exhibit
non-classicality. Two important classical Gaussian radiation fields are coherent and thermal states. Here,
we study the non-classical features of such states when photons are added to them. Non-classicality of
these states shows up in the negativity of the Wigner function. We also work out the entanglement po-
tential, a recently proposed measure of non-classicality for these states. Our analysis reveals that photon
added coherent states are non-classical for all seed beam intensities; their non-classicality increases with
the addition of more number of photons. Thermal state exhibits non-classicality at all temperatures, when
a photon is added; lower the temperature, higher is their non-classicality.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states;
quantum state engineering and measurements – 03.65.Wj State reconstruction, quantum tomography
– 03.67.Mn Entanglement production, characterization, and manipulation

QICS. 02.10.+t Quantum-Classical Transition – 01.30.+r Quantum states and dynamics as a resource
for information processing

1 Introduction

Several branches of quantum optics from non-linear op-
tics to laser-physics and cavity QED are very actively en-
gaged in a variety of processes producing non-classical
light. Such radiation fields attract attention, not only
because they provide a platform for testing fundamen-
tal concepts of quantum theory, but also for applications
of importance like precision measurements in interferom-
etry [1]. Moreover, rapidly developing area of quantum
computation and information theory has kindled further
interest in generating and manipulating non-classical radi-
ation fields — called quantum continuous variable states.
These states are promising candidates for many applica-
tions of quantum information technology [2,3]. In such a
context, Gaussian light fields gain prominence, both in
view of their conceptual and experimental importance.
However, a need to leap beyond Gaussian domain has been
emphasized [4] and the degaussification process has been
catching a lot of interest. Degaussification can be realized
in a simple manner by adding (subtracting) photons to
(from) a Gaussian field and the resulting states are known
to exhibit non-classical properties such as negativity of the
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Wigner function [5], antibunching [6], sub-Poissonian pho-
ton statistics [7] or squeezing in one of the quadratures of
the field [8], etc.

Almost a decade ago Agarwal and Tara [9] introduced,
theoretically, a new class of non-Gaussian states, which
is obtained by repeated application of the photon cre-
ation operator on the coherent state. The resulting class
of states were identified to lie between the Fock state and
the coherent state and were indeed non-classical. Recently,
single photon excitation of a classical coherent field has
been generated experimentally [10] and ultrafast, time-
domain, quantum homodyne tomography technique has
explicitly demonstrated a quantum to classical transi-
tion. In another development, a traveling non-Gaussian
field was experimentally produced by subtracting a pho-
ton from a squeezed vacuum [4]. While the pulsed homo-
dyne detection scheme confirmed non-Gaussian statistics
for the photon subtracted squeezed vacuum, the Wigner
function reconstructed from the experimental data failed
to exhibit negativity. Kim et al. [11] analyzed the non-
classicality of photon subtracted Gaussian fields and iden-
tified that the photo detection efficiency as well as the
modal purity parameter were not high enough to record a
negative Wigner function in the experiment [4] of Wenger
et al. Moreover, Kim et al. show that unless the input
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Gaussian radiation is non-classical, one cannot generate a
non-classical field through photon subtraction [11]. They
also point out the contrasting situation of photon addition
to Gaussian fields, where even a highly classical state like
thermal state turns out to be non-classical [12,13]. It may
be noted that photon addition to a thermal state results
in the removal of the vacuum part [13] and hence leads to
a truncated thermal state. All such truncated states, with
their vacuum contribution removed, are shown to be non-
classical by Lee [12].

In view of the current experimental progress [4,10]
in the production of non-Gaussian radiation fields, and
also in the tomographic reconstruction [4,10,14] of Wigner
functions of quantum states, it is timely to analyze the
non-classicality of photon added classical radiation fields,
through negativity of their Wigner functions. In this pa-
per, we investigate photon added coherent and thermal
states.

Entanglement, another striking quantum feature, has
occupied a central position in the development of quan-
tum information processing [2,3]. There has been a con-
siderable progress in understanding the connection be-
tween non-classicality and entanglement. It has been
identified [15,16] that non-classicality is an unmistak-
able source of entanglement. A beam splitter is capa-
ble of converting non-classicality of a single mode ra-
diation into bipartite entanglement. This property viz.,
non-classicality as an entanglement resource, has been
employed recently [15], to identify Entanglement poten-
tial (EP) — a computable measure of non-classicality —
of single mode radiation fields. EP allows us to analyze the
degree of non-classicality of a given single mode radiation
field. We compute EP of photon added coherent states
(PACS) and show that the EP reduces with the increase
of seed beam intensity, which is in confirmation with the
analysis of the Wigner function of the state. A compari-
son of EP’s of single, two and three photon added coherent
states reveals that non-classicality of PACS increases with
the addition of more number of photons. We verify that
the Wigner function of a photon added thermal state is
negative at the phase space origin for all temperatures,
while the EP of the state, evaluated in the low tempera-
ture limit, reveals that non-classicality of the state reduces
with increasing temperature.

2 Measures of non-classicality

Generally a non-classical state is recognized as one, which
cannot be written as a statistical mixture of coherent
states. It has been well accepted that the non-existence
of a well defined Glauber-Sudarshan P-function [17] im-
plies non-classicality of a given state. However this iden-
tification poses operational difficulties, as it requires com-
plete information of the state to be examined, so that
it’s P-function can be reconstructed. Several operational
criteria, which are equivalent to the one based on the
P-function and which can be used to distinguish between
classical and non-classical states in experimental mea-
surements have been proposed from the early days of

quantum optics. Such signatures of non-classicality, ver-
ifiable in a simple experiment are, antibunching [6] and
sub-Poissonian photon statistics [7], squeezing [8], photon
number oscillations [18], negative value of Wigner func-
tion [5], etc.

Here, we focus our attention on the Wigner function
of a given quantum state. The non-classicality charac-
ter of a state is strongly registered by negativity of the
Wigner function. Especially, Fock states show a negative
dip around the phase space origin, as has been clearly re-
flected in the experimentally reconstructed Wigner func-
tion [14]. Moreover, there has been an ongoing effort
towards more efficient quantum homodyne tomographic
techniques [4,10,14], and in such a context, analysis of
Wigner function proves to be useful.

The Wigner function of a system, characterized by the
density operator ρ is defined [5] through

W (q, p) =
1
π

∫
〈q + y|ρ|q − y〉e−2ipydy. (1)

Basically Wigner function is a quasi-probability distribu-
tion representing quantum states in phase space. It is not
a true probability distribution as it can take negative val-
ues also. If, for a state, Wigner function takes negative
value, the quantum state has no classical analog. How-
ever, the converse does not hold good: when the Wigner
function is positive everywhere, one can not conclude that
the state is classical. For example, for a squeezed state,
Wigner function is a Gaussian and is positive throughout.
But, squeezed radiation [8] is one of the most important
non-classical field. Thus, one has to resort to other mea-
sures of non-classicality.

There have been several approaches to quantify non-
classicality of a state through universal measures like,
Hillery’s non-classical distance [19] and Lee’s non-classical
depth [20]. Distance between a given non-classical state
and the set of all classical states is non-zero and hence,
serves as a measure of non-classicality, called non-classical
distance [19]. However, identifying an optimal reference
classical state is one of the main problems associated with
these distance based measures [21] of non-classicality.

Lee’s [20] non-classical depth, 0 ≤ τm ≤ 1, is essen-
tially the quantity of smoothing required to transform a
non-positive P-function into a well behaved positive dis-
tribution. (Non-classical depth τm is also interpreted as
the minimum average number of thermal photons that
are necessary to destroy the non-classical effects of a given
state). A classical state has τm = 0. For a pure Gaussian
state (Squeezed vacuum), the non-classical depth varies
between 0 and 1/2 [20]; for all non-Gaussian pure states
τm = 1 [22], thus placing all such states to be identical, as
far as their non-classicality is concerned. Therefore, this
criterion forces one to conclude that the non-classicality
of PACS is independent of the seed beam intensity. More-
over, non-classical depth of photon added thermal states
(for that matter, all truncated states) is shown to be a
maximum i.e., τm = 1 [13]. According to this measure,
photon added thermal states are equally (maximally) non-
classical at all temperatures.
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Fig. 1. (Color online) Wigner function of SPACS for different beam intensities |α|2. Here, (a) α = 0.1 (b) for α = 0.9 and (c)
for α = 3.

In this paper, we consider Entanglement potential
(EP) [15], as a universal measure of non-classicality for
our discussion of PACS and photon added thermal states.
EP gives the amount of two-mode entanglement that can
be generated from a non-classical input state, in a linear
optics set up. It is important to note here that a classical
single mode radiation does not get entangled in such an
arrangement [16]. EP is nothing but the logarithmic neg-
ativity [23] of a bipartite quantum state �σ, which results
from mixing a given single mode state σ, with vacuum
state, in a 50:50 beam splitter. More specifically, EP is
defined as

EP = log2‖�PT
σ ‖1, (2)

where �PT
σ denotes the partial transpose of a two-mode

density operator ρσ = UBS(σ ⊗ |0〉〈0|)U †
BS. In equa-

tion (2), the symbol ‖ · ‖1 denotes the trace norm1 and
UBS corresponds to a 50:50 beam splitter i.e., UBS =
exp(π

2 (a†b − ab†)), whose action (Heisenberg view point)
on the creation operators a†, b† of the two input ports is
explicitly given by

UBSa
†UBS = (a† + b†)/

√
2

UBSb
†UBS = (b† − a†)/

√
2. (3)

The state σ is said to be non-classical, iff its entanglement
potential is nonzero. EP has been evaluated [15] for a va-
riety of non-classical states like squeezed states, even and
odd coherent states, Fock states, etc.

The remainder of this paper is devoted to a study
on photon addition to (i) coherent state, an example of
a pure Gaussian state and (ii) thermal state, a mixed
Gaussian state, both of which are well-known classical
states. Action of photon creation operator on these states
results in non-classical, non-Gaussian states. We study the
non-classicality of these states through negativity of the
Wigner function and the entanglement potential.

1 Trace norm of a partially transposed density operator �PT

is given by ‖�PT ‖1 = 1 + 2N(ρ), where the negativity N(ρ) is
the sum |∑i λi| of all the negative eigenvalues of �PT .

3 Photon added coherent state

Coherent states are the analogs of classical radiation fields.
These states are described by a Poissonian photon number
distribution and have a well defined amplitude and phase.
It is interesting to see how these states turn non-classical,
when a single quantum of radiation excites them.

Recently [10], single photon added coherent states
[SPACS] has been generated experimentally and tomo-
graphically reconstructed Wigner function for such states
has been analyzed. SPACS are obtained by application of
creation operator a† on a coherent state |α〉. Normalized
SPACS is given by

|SPACS〉 =
a†|α〉

(1 + |α|2) =
a†Da(α)|0a〉√

(1 + |α|2)

=
Da(α)[|1a〉 + α∗|0a〉]√

(1 + |α|2) , (4)

where Da(α) = exp (a†α− aα∗) is the displacement op-
erator and the coherent state |α〉 = Da(α)|0a〉; |0a〉 de-
notes the vacuum state. Here we have used the property,
D†

a(α)a†Da(α) = a† +α∗. Wigner function of a SPACS is
given by [9]

W (q, p) =
−L1(|2c− α|2)
πL1(−|α|2) exp(−2|c− α|2), (5)

where c = (q + ip)/
√

2, and L1(z) = 1 − z is Laguerre
polynomial of first order. Note that W (q, p) of the SPACS
is negative when |2c− α|2 < 1.

In Figure 1 we have plotted the Wigner function of
SPACS, for various beam intensities |α|2. It is clear from
these plots that negativity of Wigner function reduces
with the increase of the intensity |α2|.

We may verify whether addition of more number of
photons leads to higher non-classicality of the beam. To
see this we consider two photon added coherent states.
Wigner function of such states is explicitly given by,

W (q, p) =
L2(|2c− α|2)
πL2(−|α|2) exp(−2|c− α|2), (6)
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Fig. 2. (Color online) Wigner function of two PACS for different beam intensities |α|2. Here, (a) α = 0.1 (b) for α = 0.9 and
(c) for α = 3.

where L2(z) = 1 − 2z + z2/2 is Laguerre polynomial of
second order.

Figure 2 gives the plots of the Wigner functions of two
photon added coherent state for varying seed beam inten-
sities. We note the same behavior here too, viz., the non-
classicalities — depicted through the Wigner functions —
decrease with increasing intensity |α|2. But through these
plots we can not conclude if addition of more number of
photons leads to higher non-classicality or not.

To investigate this, we now evaluate the EP of these
photon added states. Let us first consider a SPACS. When
SPACS is mixed with vacuum state |0〉 and is sent through
a 50:50 beam splitter, the resulting two mode state is
given by

|ψ〉 = UBS(|SPACS〉 ⊗ |0〉) = Da

(
α√
2

)
Db

(
α√
2

)

×
[
|1a0b〉 + |0a1b〉 +

√
2α∗|0a0b〉√

2(1 + |α|2)

]
, (7)

since a 50:50 beam splitter UBS acts on Da(α) as (see
Eq. (3))

UBSDa(α)U †
BS = Da

(
α√
2

)
Db

(
α√
2

)
, (8)

with Da(α/
√

2) = exp((a†α−aα∗)/
√

2) and Db(α/
√

2) =
exp((b†α−bα∗)/

√
2). The corresponding two mode density

operator is given by

�′0 = |ψ〉〈ψ|

= Da

(
α√
2

)
Db

(
α√
2

)
�0D

†
a

(
α√
2

)
D†

b

(
α√
2

)
(9)

with

�0 =
1

2(1 + |α|2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2|α|2 √
2α∗ √

2α∗ 0 · ·√
2α 1 1 0 · ·√
2α 1 1 0 · ·
0 0 0 0 · ·
· · · · · ·
· · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

in the Fock state basis |namb〉; na, mb = 0, 1, 2, ... Since
�′0 is locally equivalent to �0(asDa

(
α/

√
2
)
Db

(
α/

√
2
)

cor-
responds to a local displacements on the two mode states),
EP of �′0 and that of �0 are same. So we proceed with the
evaluation of EP of the state �0 itself.

The partial transpose of �0 is given by

�PT
0 =

1
2(1 + |α|2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2|α|2 √
2α

√
2α∗ 1 0 · ·√

2α∗ 1 0 0 0 · ·√
2α 0 1 0 0 · ·
1 0 0 0 0 · ·
0 0 0 0 0 · ·
· · · · · · ·
· · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where, except for the first 4 × 4 diagonal block all the
other elements are zero. The non-zero eigenvalues of �PT

0

are easily identified to be,

λ1 =
1

2(1 + |α|2) , λ2 = − 1
2(1 + |α|2) ,

λ3,4 =
(1 + |α|2) ± √

(1 + |α|2)2 − 1)
2(1 + |α|2) . (12)

Note that λ2 is the only negative eigenvalue of �PT, and
hence, the EP of a SPACS is given by

EP = log2‖�PT
0 ‖1 = log2(1 + 2|λ2|)

= log2

(
2 + |α|2
1 + |α|2

)
. (13)

Following similar lines, we can evaluate entanglement po-
tentials of two and three photon added coherent states
also. But the expressions are lengthy and do not exhibit
a simple structure. We have computed them numerically
and plots of entanglement potential for single, two and
three photon added coherent states are given in Figure 3.
From the figure it is evident that EP is non zero for low in-
tensity of the seed beam and it reduces gradually with the
increase of intensity showing that the state is non-classical
for all seed beam intensities. This observation is in con-
firmation with the conclusions reached through Wigner
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Fig. 3. (Color online) Entanglement potential for single, two
and three photon added coherent states.

function analysis. While the EPs of single, two and three
photon added coherent states converge for higher beam
intensities, they are all different for low beam intensity,
with larger value for higher photon added states. This ob-
servation reveals that non-classicality of photon added co-
herent state increases with the addition of larger number
of photons.

4 Photon added thermal state

Density matrix of single mode thermal state of system
in thermal equilibrium, characterized by the Hamiltonian
Ĥ = a†a�ω is given by

ρth =
exp

(
− Ĥ

kT

)

Tr
[
exp

(
− Ĥ

kT

)] . (14)

In the Fock state basis, ρth can be expressed in the form

ρth = A

∞∑
n=0

xn|n〉〈n|, (15)

where A = 1 − x, x = e−
�ω
kT ; 0 ≤ x ≤ 1. Note that

x → 0 limit corresponds to T → 0 and x → 1 implies
T → ∞. Photon added thermal state is obtained through
the application of creation operator on the thermal state
i.e.,

a†ρtha = (1 − x)
∞∑

n=0

xna†|n〉〈n|a

= (1 − x)
∞∑

n=0

xn(n+ 1)|n+ 1〉〈n+ 1|. (16)

Simplifying equation (16) we get,

a†ρtha = (1 − x)
∞∑

m=0

mxm−1|m〉〈m|

= (1 − x)
∂

∂x

(
1

1 − x
ρth

)
. (17)

Normalized photon added thermal state is given by

ρpa
th = (1 − x)2

∂

∂x

(
1

1 − x
ρth

)
. (18)

Wigner function of a thermal state has been identified [5]
to be

Wth(q, p) =
1
π
Bexp[−B(q2 + p2)]; B =

1 − x

1 + x
. (19)

Making use of the above equation, it is easy to evaluate
the Wigner function of a photon added thermal state:

W pa
th (q, p) = (1 − x)2

∂

∂x

(
1

1 − x
Wth(q, p)

)
. (20)

After simplification, we get the Wigner function of the
photon added thermal state as

W pa
th (q, p) =

1
π
B2

[
2(q2 + p2)
(1 + x)

− 1
]

exp[−B(q2 + p2)].

(21)
It is clear that the Wigner function W pa

th is negative at the
origin of phase space, at all temperatures. We have plotted
the Wigner function for different values of the parameter
x — which in turn corresponds to various temperatures
— in Figure 4. It is clear from the plots that the photon
added thermal states at various temperature are all non-
classical.

Entanglement potential of photon added thermal
states can be evaluated in the low temperature limit, since
the higher Fock states have lesser occupancy in this limit
leading to the truncation of the Hilbert space. Retaining
terms up to first and second order in the parameter x, the
density matrices of photon added thermal state are given
below:

I order in x: ρpa
th = (1 − 2x)|1〉〈1| + 2x|2〉〈2|

II order in x: ρpa
th =

1
(1 − x2)

[(1 − 2x)|1〉〈1|

+2x(1 − 2x)|2〉〈2| + 3x2|3〉〈3|].
(22)

Following similar steps to evaluate EP of SPACS, we can
numerically compute the entanglement potentials of pho-
ton added thermal states too, in the low temperature
limit. With the help of this analysis we realize that EP re-
duces with increasing temperature. We therefore conclude
that non-classicality of photon added thermal states re-
duces gradually with the increase of temperature.

In conclusion, we have analyzed the non-classicality of
photon added coherent states and thermal states, using
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Fig. 4. (Color online) Wigner functions of single photon added thermal state for various temperatures: (a) x = 0.1 (b) x = 0.5
(c) x = 0.9.

(i) negativity of the Wigner function and (ii) entangle-
ment potential. We have shown that photon added coher-
ent states are non-classical for all seed beam intensities;
the degree of non-classicality reduces with the increase
of intensity. Photon added thermal states are shown to be
non-classical at all temperatures and their non-classicality
reduces with the increase of temperature.

We thank J.K. Asboth for useful comments and the Referees
for their insightful suggestions in the light of which the paper
has been revised.
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